2014 대수학I 박사 자격시험

1. (15 points) Let G be a finite group and let g_1, g_2, \dots, g_r be representatives of the distinct conjugacy classes of G not contained in the center Z(G) of G. Prove

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)].$$

Here, $C_G(g_i)$ is the centralizer of g_i in G.

2. (20 points) Let p be a prime and G be a group of order p^{α} for some $\alpha \geq 1$. Prove $Z(G) \neq 1$. Further, if $|G| = p^2$, determine whether G is abelian or not.

3. (20 points) Let A_4 be the alternation group of degree 4. Determine whether A_4 has a subgroup of order 6.

4. (20 points) Let R be a commutative ring with unity and M be a nontrivial ideal. Show that M is maximal if and only if R/M is a field.

5. (10 points) Find the splitting field E of $x^3 - 2$ over \mathbb{Q} .

6. (15 points) Find a QR-decomposition of

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

Doctoral Qualifying Exam Differential geometry 5th February 2014

Problem 1

20 points.

Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ be the map defined by

$$(x, y, z) \rightarrow (r, s) = (xy, z).$$

- (1) Find the critical points of F.
- (2) Let S^2 be the unit sphere of \mathbb{R}^3 . Find the critical points of $F_{|S^2}$.
- (3) Find the set C of critical values of $F_{|S^2}$.
- (4) Determine if C has zero measure.

Problem 2

15 points.

Define a C^{∞} non-vanishing vector field on the sphere S^{2n+1} .

Problem 3

15 points.

(1) Consider the differential form

$$\alpha = \frac{1}{2\pi} \frac{xdy - ydx}{x^2 + y^2}$$

on $\mathbb{R}^2 \setminus \{0\}$. Determine if α is closed and/or exact.

(2) Let β denote the restriction of α to the unit circle $S^1 \subset \mathbb{R}^2$. Let $j: S^1 \hookrightarrow \mathbb{R}^2$ the canonical embedding. Determine if $j^*\beta$ is exact.

Problem 4

20 points.

- (1) Show that the product of two orientable manifold is orientable.
- (2) Show that the total space of the tangent bundle over any manifold is an orientable manifold.

Problem 5

10 points.

is

Show that the area of the region D bounded by a closed simple curve [a,b] o (x(t)) contained in \mathbb{R}^2

$$A(D) = \int_{D} dx \, dy = \frac{1}{2} \int_{a}^{b} \left(x(t) \frac{dy}{dt} - y(t) \frac{dx}{dt} \right) dt.$$

Problem 6

20 points.

Show the formula of change of variables for double integrals:

$$\iint_D F(x,y) dx \, dy = \iint_{\phi^{-1}(D)} F(x(u,v),y(u,v)) \frac{\partial(x,y)}{\partial(u,v)} du \, dv,$$

corresponding to the coordinate transformation $\phi: \mathbb{R}^2 \to \mathbb{R}^2, x \circ \phi = x(u,v), y \circ \phi = y(u,v)$.

Algebraic Topology I: Ph.D. Qualifying Exam February 5, 2014

Instructions (1) Use only ONE-SIDE of each answer sheet. (2) Answers without concrete justification will not be graded. (3) TWENTY points for each.

Problems

- 1. Let T be a 2-dimensional torus and z_1, z_2 be two distinct points on T. Compute the fundamental group of $T \setminus \{z_1, z_2\}$.
- 2. Let G be a topological group. This means, G is a group and a topological space such that the multiplication map $\mu(x,y) = x \cdot y$ and the inverse map $\nu(x) = x^{-1}$ are both continuous. Prove that $\pi_1(G)$ is abelian.
- 3. Suppose $f: S^{2n} \to S^{2n}$ is a continuous map without a fixed point. Prove that f maps some point to its antipodal point.
- 4. Let T_n = (S¹)ⁿ be the n-torus. Suppose f: T_n → T_n is a continuous map which is homotopic to a constant map. Prove that f has a fixed point.
 5. Suppose f: ℝP³ → S² × S¹ is a continuous map. Prove that the induced map f_{*}: H₃(ℝP³) → H₃(S² × S¹) is a zero map.

Real Analysis (Winter 2014)

- 1. (15 points) Give an example of an open set \mathcal{O} with the following property: the boundary of the closure of \mathcal{O} has positive Lebesgue measure.
- 2. (15 points) Suppose that a > 0. Let $f: [0,1] \to [0,\infty]$ be a measurable function satisfying that

$$\int_0^1 f(x)dx = 1.$$

Find the value of the following limit:

$$\lim_{n\to\infty} \int_0^1 n \log \left[1 + \left(\frac{f(x)}{n}\right)^a\right] dx$$

3. (15 points) Let S be a set of all complex, measurable, simple functions on a measure space X with a positive measure μ , satisfying that, for any $f \in S$,

$$\mu(\operatorname{supp}(f)) < \infty.$$

Prove that S is dense in $L^p(X, \mu)$ for any $1 \le p < \infty$.

- 4. (20 points) Let ν be a signed measure on a measure space X and μ a positive measure on X. Consider the following conditions:
 - (a) ν is absolutely continuous with respect to to μ .
 - (b) For any $\epsilon > 0$, there exists $\delta > 0$ such that $|\nu(E)| < \epsilon$ whenever $\mu(E) < \delta$.

Prove that (b) implies (a). Prove also that, if $|\nu|$ is a finite measure, then (a) implies (b).

5. (20 points) Suppose that a, b > 0. Let

$$f(x) = \begin{cases} x^a \sin(x^{-b}) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}.$$

Prove that f is of bounded variation in [0, 1] if and only if a > b.

6. (15 points) Prove that, for a bounded linear operator T on a Hilbert space, the following holds:

$$||TT^*|| = ||T^*T|| = ||T||^2 = ||T^*||^2.$$

Ph.D Qualifying Exam Complex Analysis Feb 2014 (3 hours)

Problem 1. Suppose f(z) and g(z) are analytic in domain D and that

$$\frac{f'(z_n)}{f(z_n)} = \frac{g'(z_n)}{g(z_n)},$$

at a sequence $\{z_n\}$ converging to z_0 in D. Show that f(z) = Cg(z) in D for some constant C.

Problem 2. Evaluate the following integrals

$$p.v. \int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + x^2 - 2} dx.$$

(2)

$$\int_0^\infty \frac{\sin^3 x}{x} \, dx.$$

Problem 3. Suppose that f(z) is an entire function such that f(z) is real on the circle $\{|z|=1\}$. Show that f(z) is constant.

Problem 4. If $\alpha > 1$, prove that $f(z) = z + e^{-z}$ takes the value α at exactly one point in the right half-plane.

Problem 5.

- (1) Suppose f(z) is analytic on $\{|z| < R\}$. Show if $|f(z)| \le M$ in $\{|z| < R\}$, then $|f(z) - f(0)| \le \frac{2M|z|}{R}$.

 (2) Use (1) to give another proof of the Liouville's theorem. (You may use (1))
- without a proof.)

Problem 6. Let $\{f_n(z)\}$ be a sequence of functions analytic in the connected open set D and assume they converge to f(z) uniformly on every compact subset of D.

(1) Show that f(z) is analytic in D and

$$\lim_{n\to\infty} f'_n(z) = f'(z), \quad \text{for } z \in D.$$

(2) Show that if f_n do not take zero, then either f has no zero, or $f \equiv 0$.

Qualifying Exam in Probability Theory (February 2014)

- 1. (10 pts) Let $\{X_n : n \ge 1\}$ be a sequence of independent r.v.s and $\{Y_n : n \ge 1\}$ be a sequence of independent r.v.s. If $P\{\lim_{n\to\infty} X_n \text{ exists}\} > 0$ and $P\{\lim_{n\to\infty} Y_n \text{ exists}\} > 0$, compute $P\{\lim_{n\to\infty} X_n Y_n \text{ exists}\}$.
- 2. (10 pts) Suppose that $\{X_n : n \geq 1\}$ are random variables on (Ω, \mathcal{B}, P) and define $S_0 := 0, S_n := \sum_{i=1}^n X_i, n \geq 1$. Let $\tau := \inf\{n > 0 : S_n > 0\}$. Assume that $\tau(\omega) < \infty$ for all $\omega \in \Omega$. Show that S_{τ} is a random variable. Here, S_{τ} is defined by $S_{\tau(\omega)}(\omega)$ for $\omega \in \Omega$.
- 3. (10 pts) Let (Ω, \mathcal{B}, P) be a probability space and $X \in L_1$. For a random variable X', prove the following. $\int_A X \ dP = \int_A X' \ dP$ for any $A \in \mathcal{B}$ if and only if $\int_A X \ dP = \int_A X' \ dP$ for any $A \in \mathcal{P}$ where \mathcal{P} is a π -system generating \mathcal{B} and containing Ω .
- 4. (20 pts) Let $\{X_n, n \ge 1\}$ be independent and identically distributed (i.i.d.) random variables. Let $S_n = X_1 + X_2 + \cdots + X_n$.
 - (a) (10 pts) Assume that $E[|X_1|^p] < \infty$ where p > 0. Define $Y_k = X_k I_{\{|X_k| \le k^{1/p}\}}, k \ge 1$, and $T_n = Y_1 + Y_2 + \dots + Y_n$. Show that $\frac{S_n}{n^{1/p}} \to 0$ almost surely if and only if $\frac{T_n}{n^{1/p}} \to 0$ almost surely.
 - (b) (10 pts) If $\frac{S_n}{n^{1/p}} \to 0$ almost surely for p > 0, show that $E[|X_1|^p] < \infty$.
- 5. (10 pts) Suppose that $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a martingale. Show the following: $\{X_n\}$ is L_1 -convergent if and only if there exists $X \in L_1$ such that $X_n = E[X|\mathcal{B}_n], n \geq 0$.
- 6. (20 pts) A sequence $\{X_n\}$ is said to converge completely to a random variable X if $\sum_{n=1}^{\infty} P\{|X_n X| > \epsilon\} < \infty$ for every $\epsilon > 0$. Prove or disprove the following.
 - (a) If X_n converges completely to a random variable X, then X_n converges to X almost surely.
 - (b) If X_n converges to X almost surely, then X_n converges completely to X.
- 7. (20 pts) Let $\{\mathcal{B}_n, n \geq 0\}$ be a filtration and $\{(X_n, \mathcal{B}_n), n \geq 0\}$ be a submartingale.
 - (a) Show that $E[Y|\mathcal{B}_{\tau}] = \sum_{n \in \mathbb{N}} E[Y|\mathcal{B}_n] I_{\{\tau = n\}}$ for $Y \in L_1$ and a stopping time τ where $\mathbb{N} = \{0, 1, \dots\} \cup \{\infty\}$.
 - (b) Show that for every pair of bounded stopping times τ_1 and τ_2 such that $\tau_1 \leq \tau_2$, X_{τ_1} and X_{τ_2} are both integrable and $E[X_{\tau_2}|\mathcal{B}_{\tau_1}] \geq X_{\tau_1}$.

Qualifying Exam 2014 in Advanced Statistics

Feburary, 2013

- 1. (15pt) Let Y_1, Y_2, \ldots, Y_n constitute a random sample from $f_Y(y; \alpha) = \alpha^{-1} e^{-y/\alpha}, y > 0, \alpha > 0$. It is of interest to make statistical inferences about the unknown parameter $\theta = V(Y)$.
 - (a) (7pt) If the observed value of $S = \sum_{i=1}^{n} Y_i$ is s = 40 when n = 50, compute an appropriate large sample 95% confidence interval for θ .
 - (b) (8pt) If n = 100 and P(Type I error) $\doteq 0.05$, propose two kinds of appropriate large sample tests for $H_0: \theta = 2$ vs $H_1: \theta > 2$. What is the smallest value of $\theta(>2)$ such that the power of the two tests will be at least 0.95? Based on your results, which test would you prefer?
- 2. (20pt) Let $(X_1, Y_1), (X_1, Y_1), \ldots, (X_n, Y_n)$ constitute a random sample of size n from

$$f_{X,Y}(x,y;\theta) = 2\theta^{-2}e^{-(x+y)/\theta}, \quad 0 < x < y < \infty$$

- (a) (10pt) Derive an explicit expression for the minimum variance unbiased estimator (MVUE) $\hat{\theta}$ for the unknown parameter θ and check if its variance is equal to the Cramer-Rao lower bound.
- (b) (10pt) Find a reasonable value for the smallest sample size n, say n^* , such that the power of the uniformly most powerful (UMP) test for $H_0: \theta = 1$ vs $H_1: \theta > 1$ is at least 0.95 when P(Type 1 error) $\doteq 0.05$ and when the true value of θ is at least equal to 1.20?
- 3. (30pt) Suppose that $Y_1 \sim Binomial(n_1, \pi_1)$, $Y_2 \sim Binomial(n_2, \pi_2)$ and that Y_1 and Y_2 are independent random variables.
 - (a) (15pt) When $n_1 = 1000$ and $Y_1 = 300$, compute an appropriate 95% confidence interval for the unknown parameter $\theta = \pi_1/(1-\pi_1)$, called an odds.
 - (b) (15pt) Let $\hat{\pi}_1 = Y_1/n_1$ and $\hat{\pi}_2 = Y_2/n_2$. Further, let $\theta = ln[\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}]$ be the log odds ratio, and let $\hat{\theta} = ln[\frac{\hat{\pi}_1/(1-\hat{\pi}_1)}{\hat{\pi}_2/(1-\hat{\pi}_2)}]$ be an estimator for θ . Under the constraint $(n_1+n_2) = N$, where N is the fixed total sample size, find reasonable expressions for n_1 and n_2 (as functions of N, π_1 , and π_2) that minimize $V(\hat{\theta})$. If N = 100, $\pi_1 = 0.4$, and $\pi_2 = 0.2$, what are the numerical values of n_1 and n_2 ? Also, provide a sufficient condition such that $n_1 = n_2$.

4. (10pt) Let X_1, \ldots, X_n be iid observations from a location-scale family. Let $T_1(X_1, \ldots, X_n)$ and $T_2(X_1, \ldots, X_n)$ be two statistics that both satisfy

$$T_i(ax_1+b,\ldots,ax_n+b)=aT_i(x_1,\ldots,x_n)$$

for all values of x_1, \ldots, x_n and b and for any a > 0.

- (a) (5pt) Show that T_1/T_2 is an ancillary statistic.
- (b) (5pt) Let R be the sample range and S be the sample standard deviation. Verify that R and S satisfy the above condition so that R/S is an ancillary statistic.
- 5. (10pt) Let Y_1, \ldots, Y_n constitute a random sample from a pdf $f_Y(y) = 5y^4$, 0 < y < 1. Consider a random variable $U_r = nY_{(1)}^r$ where $Y_{(1)} = min\{Y_1, \ldots, Y_n\}$.
 - (a) (5pt) For r=1, determine to what random variable U_r converges in distribution as $n\to\infty$.
 - (b) (5pt) For r=5, determine to what random variable U_r converges in distribution as $n\to\infty$.
- 6. (15pt) Let X_1, \ldots, X_n constitute an iid random sample from $N(\mu, \sigma^2)$.
 - (a) (5pt) It is of interest to estimate $\theta = \mu^2$. Consider two estimators; $\hat{\theta}_1 = \bar{X}^2$ and $\hat{\theta}_2$ is an unbiased estimator involving \bar{X} and S^2 . Compare the mean squared error (MSE) for the two estimators and decide under what circumstances you would prefer one estimator to another.
 - (b) (5pt) Now consider X_1, \ldots, X_n are random samples with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$, and $Corr(X_i, X_{i'}) = \rho$. Derive explicitly $E(S^2)$ and comment on using S^2 as an estimator of σ^2 in this correlated data situation.
 - (c) (5pt) When $\mu = 1$, consider a conjugate prior for σ^2 and propose an appropriate Bayes point and interval estimators for σ^2 .

Numerical Analysis Qualifying Exam

February 2014

- 1. Consider a polynomial $p(x) = x^6 x 1$.
 - (a) (7 points) Find the number of positive real roots and the number of negative roots of p(x).
 - (b) (7 points) Find an upper bound for all of the roots of p(x).
 - (c) (6 points) Discuss how to find all real roots of p(x).
- 2. There exist continuous functions f on the interval [0,1] whose best uniform approximation from Π_3 is the zero function. Here Π_3 is the space of all polynomials of degree ≤ 3 (in one variable).
 - (a) (7 points) Give an example of such a function f.
 - (b) (6 points) Would the zero function still be the best approximation to the f you chose in (a) if we replace Π_3 by Π_k for k=2,4? Explain. (Note that you are asked here two separate questions: one for k=2 and one for k=4).
 - (c) (7 points) Would the zero function still be the best approximation to the f you chose in (a) if we replace [0,1] by [0,1/2]? Explain.
- 3. Consider the ODE

$$y'=f(t,y)$$
.

- (a) (7 points) Describe the trapezoidal method for the ODE above. Define the local truncation error and estimate it.
- (b) (7 points) Show that the truncation error for the following multistep method is of the same order as the method used in (a):

$$y_{n+1} = 2y_n - y_{n-1} - hf(t_{n-1}, y_{n-1}) + hf(t_n, y_n).$$

- (c) (6 points) What can be said about the global convergence rate for these two methods? Justify your conclusions for both methods.
- 4. Consider the real system of linear equations

$$Ax = b (1)$$

where A is nonsingular and satisfies

for all real v, where (\cdot, \cdot) denotes the Euclidean inner product.

(a) (6 points) Show that (v, Av) = (v, Mv) for all real v, where $M = \frac{1}{2}(A + A^T)$ is the symmetric part of A.

(b) (6 points) Prove that

$$rac{(v,Av)}{(v,v)} \geq \lambda_{\min}(M) > 0$$
 ,

where $\lambda_{\min}(M)$ is the minimum eigenvalue of M.

(c) (8 points) Now consider the iteration for computing a series of approximate solutions to (1),

$$x_{k+1} = x_k + \alpha r_k \,,$$

where $r_k = b - Ax_k$ and α is chosen to minimize $||r_{k+1}||_2$ as a function of α . Prove that

$$\frac{\|r_{k+1}\|_2}{\|r_k\|_2} \le \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^T A)}\right)^{1/2}.$$

5. (10 points each)

- (a) Using Householder matrices, reduce an $n \times n$ real matrix A to an upper Hessenberg form.
- (b) Explain how to find all eigenvalues of a symmetric matrix A using above method.